On the algebraic properties of exponentially stable integrable hamiltonian systems

نویسندگان

چکیده

Steepness is a generic geometric property which, together with complex-analyticity, needed in order to ensure stability of nearly-integrable hamiltonian system over exponentially long times. Following strategy developed by Nekhoroshev, we construct sufficient conditions for steepness given function that involve algebraic equations on its derivatives up five. This important view applications (e.g. Celestial Mechanics). The underlying analysis suggests some interesting considerations the genericity steepness. Moreover, this work represents first step towards construction involving studied an arbitrary order.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraic Properties of Gardner’s Deformations for Integrable Systems

An algebraic definition of Gardner’s deformations for completely integrable bi-Hamiltonian evolutionary systems is formulated. The proposed approach extends the class of deformable equations and yields new integrable evolutionary and hyperbolic Liouville-type systems. An exactly solvable two-component extension of the Liouville equation is found. Introduction. We consider the problem of constru...

متن کامل

Completely Integrable Bi-hamiltonian Systems

We study the geometry of completely integrable bi-Hamiltonian systems, and in particular, the existence of a bi-Hamiltonian structure for a completely integrable Hamiltonian system. We show that under some natural hypothesis, such a structure exists in a neighborhood of an invariant torus if, and only if, the graph of the Hamiltonian function is a hypersurface of translation, relative to the af...

متن کامل

On the stability problem for nearly{integrable Hamiltonian systems

The problem of stability of the action variables in nearly{integrable (real{ analytic) Hamiltonian systems is considered. Several results (fully described in CG2]) are discussed; in particular: (i) a generalization of Arnold's method (A]) allowing to prove instability (i.e. drift of action variables by an amount of order 1, often called \Arnold's diiusion") for general perturbations of \a{prior...

متن کامل

Symplectic theory of completely integrable Hamiltonian systems

This paper explains the recent developments on the symplectic theory of Hamiltonian completely integrable systems on symplectic 4-manifolds, compact or not. One fundamental ingredient of these developments has been the understanding of singular affine structures. These developments make use of results obtained by many authors in the second half of the twentieth century, notably Arnold, Duisterm...

متن کامل

Exponentially Accurate Hamiltonian Embeddings of Symplectic A-stable Runge–kutta Methods for Hamiltonian Semilinear Evolution Equations

We prove that a class of A-stable symplectic Runge–Kutta time semidiscretizations (including the Gauss–Legendre methods) applied to a class of semilinear Hamiltonian PDEs which are well-posed on spaces of analytic functions with analytic initial data can be embedded into a modified Hamiltonian flow up to an exponentially small error. As a consequence, such timesemidiscretizations conserve the m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de la Faculté des Sciences de Toulouse

سال: 2022

ISSN: ['0240-2963', '2258-7519']

DOI: https://doi.org/10.5802/afst.1723